

représentation schématique d'un tel anion. Deux plans de ce type traversent la maille parallèlement au plan bc en $x \sim \frac{1}{4}$ et $x \sim \frac{3}{4}$. Entre ces plans se situent les ions ammonium. La Fig. 2 donne une projection de cet arrangement sur le plan ab. La Fig. 4 donne la projection d'un plan anionique SiP₄O₁₃ sur le plan bc et la Fig. 3 la projection de l'ensemble de l'arrangement sur le plan ac.

Les distances Si–O dans l'octaèdre SiO₆ rapportées dans le Tableau 2 sont très voisines de celles signalées dans les autres composés ou le silicium possède cette coordination (Liebau, 1971). Les ions ammonium sont disposés entre les plans anioniques et possèdent des voisinages oxygène assez irréguliers (Tableau 2).

Références

AVERBUCH-POUCHOT, M. T. & DURIF, A. (1976). J. Solid State Chem. A paraître.

LIEBAU, F. (1971). Bull. Soc. Fr. Minér. Crist. 94, 239-249.

Acta Cryst. (1976). B32, 2960

Structure Cristalline du Polyphosphate de Lithium, LiPO₃

PAR J.C. GUITEL ET I. TORDJMAN

Laboratoire des Rayons X, CNRS, 166-X, Centre de Tri, 38042 Grenoble Cédex, France

(Reçu le 6 mai 1976, accepté le 14 mai 1976)

The crystal structure of lithium polyphosphate, LiPO₃, has been solved with 3487 independent reflexions. The unit cell is monoclinic with a = 16.453 (2), b = 5.405 (1), c = 13.086 (2) Å, $\beta = 98.99$ (2)° and Z = 20; space group *Pn*. The final *R* for all observed reflexions is 0.034. The main characteristic of this arrangement is a (PO₃) chain with a period of ten tetrahedra in the [101] direction.

Introduction

Les données cristallographiques et la préparation du polyphosphate de lithium, LiPO₃, ont déjà été décrites (Grenier & Durif, 1973); nous rappellerons simplement que sa maille monoclinique a=16,453 (2), b=5,405 (1), c=13,086 (2) Å, $\beta=98,99$ (2)° renferme 20 unités formulaires. Les extinctions observées conduisent à deux groupes spatiaux possibles: Pn ou P2/n. La détermination de la structure montrera que le groupe spatial est le noncentrosymétrique Pn.

Données expérimentales

Le cristal choisi avait la forme d'un prisme à base carrée de dimension $0.20 \times 0.20 \times 0.24$ mm ne nécessitant aucune correction d'absorption pour la longueur d'onde utilisée, celle du molybdène. Les intensités diffractées ont été mesurées à l'aide d'un diffractomètre Hilger & Watts. Les mesures étaient effectuées en utilisant la méthode de mesure rapide décrite par Bassi (1973). 3549 réflexions dont la fréquence au sommet était supérieure à 10 c.p.s. ont été retenues pour l'étude structurale, après normalisation par comparaison à une courbe d'étalonnage obtenue à partir de 26 mesures intégrées très soigneusement effectuées.

Détermination de la structure

L'examen de la fonction de Patterson se révèle dès le début très fructueux pour déterminer le modèle de l'enchaînement de l'anion polyphosphate. Cependant,

Tableau 1. Paramètres atomiques et coefficients de température isotropes pour LiPO₃ O(Lij) = oxygène de liaison, P(j)-O-P(i). O(Eik) = oxygène extérieur à la chaîne et lié au phosphore P(i).

	x	У	Z	B		x	У	z	В
P(1)	0,500	0,8117 (4)	0,500	0,48	O(E3B)	0,7227 (4)	0,7169 (14)	0,4033 (5)	0,81
P(2)	0,59249 (15)	0,1526 (4)	0,3871 (2)	0,46	O(E4A)	0,7527 (4)	0,2455 (15)	0,1238 (6)	1,05
P(3)	0,69745 (16)	0,8092 (4)	0,2959 (2)	0,61	O(E4B)	0,8294 (4)	0,3495 (15)	0,3014 (6)	1,19
P(4)	0,80915 (15)	0,1719 (4)	0,2179 (2)	0,48	O(E5A)	0,8333 (5)	0,7833 (15)	0,0433 (6)	1,19
P(5)	0,90816 (15)	0,8398 (4)	0,1150 (2)	0,59	O(E5B)	0,9456 (5)	0,6418 (16)	0,1834 (6)	1,32
P(6)	0,07331 (15)	0,1581 (4)	0,4086 (2)	0,52	O(E6A)	0,0368 (4)	0,3559 (14)	0,3366 (5)	0,79
P(7)	0,17433 (16)	0,8247 (4)	0,3102 (2)	0,67	O(E6B)	0,1507 (4)	0,2112 (14)	0,4845 (5)	0,82
P(8)	0,28662 (16)	0,1884 (4)	0,2316 (2)	0,54	O(E7A)	0,1524 (4)	0,6592 (15)	0,2176 (5)	0,86
P(9)	0,38988 (15)	0,8475 (4)	0,1381 (2)	0,67	O(E7B)	0,2277 (5)	0,7359 (15)	0,4054 (6)	1,34
P(10)	0,48161 (5)	0,1899 (4)	0,02197 (8)	0,63	O(E8A)	0,2594 (4)	0,2757 (14)	0,1244 (5)	1,29
O(L12)	0,5376 (3)	0,9559 (11)	0,4058 (4)	0,69	O(E8B)	0,3277 (4)	0,3601 (15)	0,3072 (6)	1,47
O(L23)	0,6420 (4)	0,0514 (11)	0,2994 (5)	1,09	O(E9A)	0,3298 (4)	0,7979 (15)	0,0439 (6)	1,22
O(L34)	0,7772 (3)	0,9188 (11)	0,2546 (5)	1,25	O(E9B)	0,4456 (4)	0,6511 (15)	0,1853 (5)	0,97
O(L45)	0,8948 (4)	0,0786 (12)	0,1861 (4)	0,95	O(E10A)	0,4185 (4)	0,3264 (14)	0,9510 (5)	0,80
O(L51)	0,4789 (4)	0,0544 (11)	0,5552 (5)	1,17	O(E10B)	0,5575 (4)	0,3243 (14)	0,6795 (5)	1,04
O(L67)	0,0904 (4)	0,9228 (11)	0,3419 (4)	0,69	Li(1)	0,3174 (9)	0,507 (3)	0,4469 (11)	1,11 (25)
O(L78)	0,2086 (4)	0,0842 (11)	0,2705 (5)	1,30	Li(2)	0,4339 (9)	0,520 (2)	0,3236 (12)	1,06 (23)
O(L89)	0,3433 (4)	0,9473 (10)	0,2284 (5)	0,79	Li(3)	0,5497 (10)	0,493 (2)	0,2016 (12)	1,29 (25)
O(L910)	0,4446 (4)	0,0822 (12)	0,1208 (4)	1,08	Li(4)	0,6651 (10)	0,493 (3)	0,0827 (12)	1,61 (30)
O(L106)	0,0024 (4)	0,0649 (10)	0,4677 (4)	0,85	Li(5)	0,7429 (13)	0,007 (1)	0,0134 (18)	1,24 (7)
O(E1A)	0,4244 (4)	0,6757 (15)	0,4580 (6)	1,11	Li(6)	0,8184 (10)	0,480 (3)	0,4438 (13)	1,30 (30)
O(E1B)	0,5665 (4)	0,6880 (15)	0,5713 (6)	1,35	Li(7)	0,9332 (9)	0,522 (2)	0,3227 (12)	0,71 (23)
O(E2A)	0,5400 (4)	0,3554 (15)	0,3366 (6)	1,08	Li(8)	0,0506 (11)	0,462 (3)	0,2034 (14)	1,71 (31)
O(E2B)	0,6517 (4)	0,2027 (13)	0,4834 (5)	0,84	Li(9)	0,1679 (10)	0,525 (3)	0,0813 (13)	1,49 (29)
O(E3A)	0,6538 (4)	0,6429 (14)	0,2133 (5)	0,87	Li(10)	0,2460 (6)	0,0397 (7)	0,0081 (9)	0,87 (8)

Tableau 2. Facteurs de température anisotropes, $\beta_{ij} \times 10^5$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
P(1)	38 (6)	548 (60)	68 (8)	-28(16)	24 (6)	- 19 (19)
P(2)	46 (̈́́7)́	394 (60)	60 (10)	-11 (16)	-2(6)	10 (19)
P(3)	50 (6)	424 (59)	126 (10)	-1(17)	22 (6)	19 (20)
P(4)	41 (7)	529 (59)	52 (9)	-1(15)	-13 (6)	-43 (18)
P(5)	58 (7)	398 (56)	113 (10)	72 (16)	35 (6)	78 (20)
P(6)	45 (6)	639 (59)	45 (9)	- 55 (15)	-7 (6)	- 16 (19)
P(7)	66 (7)	485 (61)	119 (10)	17 (15)	28 (6)	- 50 (20)
P(8)	54 (6)	640 (62)	47 (9)	- 20 (17)	7 (6)	- 51 (19)
P(9)	57 (7)	628 (64)	107 (11)	64 (17)	26 (7)	38 (21)
P(10)	70 (7)	499 (62)	83 (8)	2 (17)	5 (6)	23 (20)
O(L12)	88 (2)	632 (167)	56 (24)	- 58 (48)	-3 (18)	0 (53)
O(L23)	110 (21)	1056 (21)	147 (29)	82 (51)	62 (21)	144 (60)
O(L34)	97 (20)	800 (194)	324 (39)	- 80 (49)	166 (23)	- 10 (69)
O(L45)	84 (20)	1048 (192)	124 (29)	- 84 (50)	50 (20)	- 128 (60)
O(L51)	119 (22)	809 (182)	218 (33)	- 22 (50)	78 (24)	-118 (62)
O(L67)	52 (18)	594 (164)	123 (29)	38 (43)	6 (18)	- 62 (54)
O(L78)	107 (20)	641 (181)	298 (36)	-11 (48)	16 (2)	61 (64)
O(<i>L</i> 89)	92 (20)	634 (185)	110 (29)	160 (46)	46 (20)	24 (56)
O(L910)	117 (23)	999 (191)	150 (28)	-86 (53)	81 (20)	- 44 (63)
O(L106)	89 (20)	695 (167)	141 (28)	61 (47)	71 (21)	127 (57)
O(E1A)	65 (22)	1085 (249)	221 (38)	- 206 (59)	57 (23)	-17 (8)
O(E1B)	129 (21)	1154 (196)	203 (33)	20 (49)	34 (2)	95 (64)
O(E2A)	87 (19)	738 (187)	225 (32)	151 (49)	32 (20)	193 (63)
O(E2B)	102 (21)	518 (212)	98 (28)	42 (58)	-48 (19)	-123 (66)
O(E3A)	59 (17)	1075 (209)	102 (24)	- 49 (49)	-5 (16)	- 205 (60)
O(E3B)	63 (17)	1064 (191)	68 (24)	25 (45)	-14 (17)	136 (53)
O(E4A)	92 (17)	1062 (158)	118 (26)	153 (40)	-43 (17)	1 (48)
O(E4B)	92 (20)	1161 (199)	171 (29)	13 (50)	- 18 (18)	-271(61)
O(E5A)	92 (24)	918 (236)	204 (36)	50 (64)	- 32 (23)	- 97 (76)
O(E5B)	100 (25)	1006 (227)	255 (36)	55 (62)	18 (23)	47 (71)
O(E6A)	100 (21)	816 (191)	52 (21)	60 (53)	8 (17)	177 (53)
O(E6B)	85 (22)	765 (224)	91 (31)	25 (60)	-9(21)	- 46 (69)
O(E7A)	119 (21)	795 (167)	64 (23)	-60(48)	22 (17)	-24(51)
O(E7B)	177 (22)	968 (152)	140 (27)	125 (44)	-9 (19)	-44 (50)
O(E8A)	188 (24)	677 (204)	164 (31)	94 (54)	27 (21)	-126(60)
O(E8B)	152 (25)	1065 (234)	227 (34)	- 90 (63)	17 (23)	-70(72)
O(E9A)	78 (22)	1376 (244)	182 (34)	51 (64)	15 (22)	40 (77)
O(E9B)	91 (19)	1067 (195)	104 (24)	61 (48)	12 (17)	43 (56)
O(E10A)	66 (17)	970 (167)	76 (24)	102 (43)	-17(16)	185 (54)
O(E10B)	119 (22)	889 (218)	116 (31)	- 35 (55)	0 (20)	40 (70)

la position exacte des chaînes n'a pu être déterminée que grâce à l'utilisation d'un programme de méthode directe qui cependant, au départ, nous donnait une indication en faveur de l'existence d'un centre de symétrie; hypothèse qui se révèlera fausse en fin de détermination de structure. A ce stade une série d'affinements par moindres carrés à matrice complète (Prewitt, 1966) conduit à un facteur R de 10,3% sur l'ensemble des observations. Des synthèses de Fourierdifférence permettent alors de confirmer les positions des atomes de Li pressenties lors de l'étude de la fonction de Patterson. L'affinement de leurs positions, puis l'introduction des paramètres thermiques anisotropes abaisse rapidement la valeur du facteur R à 0,034.

Les paramètres des positions atomiques et les facteurs thermiques isotropes sont consignés dans le Tableau 1, les facteurs thermiques anisotropes dans le Tableau 2, les longueurs et directions des axes des ellipsoïdes de vibration thermique dans le Tableau 3 et les principales distances interatomiques et angles de liaison dans le Tableau 4.*

Description de la structure

L'arrangement atomique du polyphosphate de lithium est caractérisé par la grande régularité des chaînes phosphatées. Chaque maille est traversée par deux chaînes de période dix tétraèdres dont cinq sont indépendants. Ces chaînes se développent dans le plan *ac* parallèlement à la diagonale principale. La Fig. 1 représente une projection de l'ensemble de cet arrangement sur le plan *ac*.

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31905: 36 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

 Tableau 3. Longueurs des axes principaux des ellipsoïdes de vibration thermique des atomes et orientation par rapport aux axes cristallographiques

	U	θ_a	θ_b	θ_c		U	θ_a	θ_b	θ_{c}		U	θ_a	θ_{b}	θ_{c}
P(1)	0,094Å 0,079	112° 66	33° 57	109° 47	O(L51)	0,153Å 0,112	60° 45	108° 46	43° 106	O(<i>E</i> 4 <i>B</i>)	0,164Å 0,112	71° 23	45° 113	133° 97
	0,056	33	82	131		0,092	59	130	129		0.075	75	53	44
P(2)	0,086	35	113	123	O(L67)	0,112	110	126	39	O(E5A)	0.155	124	113	36
	0,074	67	23	99		0,089	58	58	53	(,	0,108	102	23	69
	0,068	64	94	35		0,075	38	128	104		0,097	37	91	61
P(3)	0,104	81	81	19	O(L78)	0,161	101	82	8	O(E5B)	0,148	96	78	12
	0,080	140	50	81		0,120	13	94	86	、 <i>,</i>	0,128	49	40	100
	0,077	52	40	107		0,095	83	9	97		0,107	41	128	84
P(4)	0,094	65	39	122	O(L89)	0,137	42	53	77	O(E6A)	0,128	61	39	70
	0,082	40	126	113		0,093	94	115	25	. ,	0,113	29	113	114
	0,052	60	76	41		0,052	132	46	68		0,030	86	119	32
P(5)	0,114	60	61	50	O(L910)	0,148	47	118	62	O(E6B)	0.120	41	57	119
(0,077	132	107	39		0,114	77	30	65	. ,	0,101	125	35	84
	0,059	122	34	94		0,079	135	100	38		0,080	71	77	30
P(6)	0,104	119	29	84	O(L106)	0,139	57	62	52	O(E7A)	0,131	27	116	83
	0,078	43	64	130		0,091	125	35	90		0,102	63	26	99
	0,053	61	75	40		0,069	127	110	37		0,071	97	85	4
P (7)	0,106	70	107	33	O(E1A)	0,164	112	48	125	O(E7B)	0,168	26	66	104
	0,094	36	54	103		0,114	111	57	35	. ,	0,108	116	33	105
	0,074	119	40	59		0,048	32	58	95		0,105	88	67	25
P (8)	0,100	102	20	104	O(E1B)	0,144	74	48	49	O(E8A)	0,164	17	73	101
	0,084	12	78	103		0,130	17	107	103	• •	0,128	79	117	34
	0,058	89	73	19		0,117	98	133	43		0.077	103	33	58
P (9)	0,111	59	46	64	O(E2A)	0,154	74	57	42	O(E8B)	0,150	29	119	93
	0,089	99	120	30		0,117	38	69	128	. ,	0,143	104	107	18
	0,072	32	121	105		0,061	124	40	103		0,112	64	35	71
P(10)	0,098	14	94	112	O(E2B)	0,146	37	71	129	O(E9A)	0,145	79	16	79
	0,089	78	38	56		0,089	122	39	105		0.124	103	99	11
	0,079	82	128	42		0,053	73	56	43		0.099	17	102	87
O(<i>L</i> 12)	0,119	29	119	104	O(E3A)	0,143	89	31	121	O(E9B)	0,131	65	28	85
	0,089	62	29	104		0,097	22	101	117	. ,	0,106	29	113	115
	0,067	79	84	20		0,057	68	61	44		0.091	78	105	25
O(<i>L</i> 23)	0,150	59	49	60	O(E3B)	0,133	94	23	66	O(E10A)	0,136	76	28	67
	0,107	45	133	87		0,101	21	78	116		0,107	151	90	52
	0,086	119	108	29		0,053	68	109	36		0.026	64	118	46
O(<i>L</i> 34)	0,186	62	95	37	O(E4A)	0,154	44	52	115	O(E10B)	0,133	28	114	112
	0,111	100	17	77		0,113	107	46	45	. ,	0.112	62	29	83
	0,020	30	75	124		0,065	50	112	55		0,095	82	106	23
O(<i>L</i> 45)	0,142	114	41	116		•					,			
	0,097	49	50	72										
	0.080	129	80	32										

Tetraeure P(1)O ₄	P(1)-O(L12) P(1)-O(E1A)	1,568 (6) 1,475 (7)	P(1)-O(L51) P(1)-O(E1B)	1,576 (6) 1,483 (7)
Titue Mar D(2) O	$\begin{array}{l} O(L12) - O(L51) \\ O(L12) - O(E1A) \\ O(L12) - O(E1B) \\ O(L51) - O(E1A) \\ O(L51) - O(E1B) \\ O(E1A) - O(E1B) \\ O(E1A) - O(E1B) \end{array}$	2,435 (9) 2,455 (10) 2,472 (9) 2,514 (10) 2,452 (10) 2,569 (10)	$\begin{array}{l} O(L12) - P(1) - O(L51) \\ O(L12) - P(1) - O(E1A) \\ O(L12) - P(1) - O(E1B) \\ O(L51) - P(1) - O(E1A) \\ O(L51) - P(1) - O(E1B) \\ O(E1A) - P(1) - O(E1B) \end{array}$	101,5 (3) 107,5 (3) 108,2 (3) 110,9 (3) 106,5 (3) 120,5 (4)
Tetraedre P(2)O₄	P(2)-O(<i>L</i> 12) P(2)-O(<i>E</i> 2 <i>A</i>)	1,607 (6) 1,485 (8)	P(2)-O(<i>L</i> 23) P(2)-O(<i>E</i> 23)	1,605 (7) 1,493 (7)
Tátraddra B(2)O	$\begin{array}{l} O(L12) -O(L23) \\ O(L12) -O(E2A) \\ O(L12) -O(E2B) \\ O(L23) -O(E2A) \\ O(L23) -O(E2A) \\ O(L23) -O(E2B) \\ O(E2A) -O(E2B) \end{array}$	2,487 (9) 2,544 (10) 2,525 (9) 2,453 (10) 2,524 (9) 2,579 (9)	$\begin{array}{l} O(L12) -P(2) -O(L23) \\ O(L12) -P(2) -O(E2A) \\ O(L12) -P(2) -O(E2B) \\ O(L23) -P(2) -O(E2A) \\ O(L23) -P(2) -O(E2B) \\ O(E2A) -P(2) -O(E2B) \\ O(E2A) -P(2) -O(E2B) \end{array}$	101,4 (3) 110,6 (4) 108,9 (3) 105,0 (4) 109,0 (4) 119,4 (4)
refraeure P(3)04	P(3)-O(<i>L</i> 23) P(3)-O(<i>E</i> 3 <i>A</i>)	1,601 (6) 1,500 (7)	P(3)–O(<i>L</i> 34) P(3)–O(<i>E</i> 3 <i>B</i>)	1,610 (7) 1,487 (7)
	$\begin{array}{l} O(L23) -O(L34) \\ O(L23) -O(E3A) \\ O(L23) -O(E3B) \\ O(L34) -O(E3A) \\ O(L34) -O(E3B) \\ O(E3A) -O(E3B) \\ O(E3A) -O(E3B) \end{array}$	2,496 (9) 2,500 (9) 2,513 (9) 2,512 (9) 2,515 (10) 2,598 (9)	$\begin{array}{l} O(L23) -P(3) - O(L34) \\ O(L23) -P(3) - O(E3A) \\ O(L23) -P(3) - O(E3B) \\ O(L34) -P(3) - O(E3A) \\ O(L34) -P(3) - O(E3B) \\ O(E3A) -P(3) - O(E3B) \end{array}$	102,0 (3) 107,3 (3) 108,9 (3) 107,6 (3) 108,5 (3) 120,8 (4)
Tetraedre $P(4)O_4$	P(4)-O(L34) P(4)-O(E4A)	1,568 (7) 1,476 (7)	P(4)-O(<i>L</i> 45) P(4)-O(<i>E</i> 4 <i>B</i>)	1,615 (7) 1,452 (8)
	$\begin{array}{l} O(L34) -O(L45) \\ O(L34) -O(E4A) \\ O(L34) -O(E4B) \\ O(L45) -O(E4A) \\ O(L45) -O(E4B) \\ O(E4A) -O(E4B) \\ O(E4A) -O(E4B) \end{array}$	2,419 (9) 2,448 (10) 2,523 (10) 2,523 (9) 2,467 (10) 2,528 (10)	$\begin{array}{l} O(L34) -P(4)-O(L45) \\ O(L34) -P(4)-O(E4A) \\ O(L34) -P(4)-O(E4B) \\ O(L45) -P(4)-O(E4A) \\ O(L45) -P(4)-O(E4B) \\ O(E4A) -P(4)-O(E4B) \end{array}$	98,9 (3) 107,0 (4) 113,2 (4) 109,3 (4) 106,9 (4) 119,3 (4)
Tétraèdre P(5)O₄	P(5)-O(L45) P(5)-O(E5A)	1,626 (7) 1,460 (7)	P(5)-O(L51) P(5)-O(E5B)	1,603 (7) 1,467 (8)
	$\begin{array}{l} O(L45) -O(L51) \\ O(L45) -O(E5A) \\ O(L45) -O(E5B) \\ O(L51) -O(E5A) \\ O(L51) -O(E5A) \\ O(E5A) -O(E5B) \\ O(E5A) -O(E5B) \end{array}$	2,478 (9) 2,545 (9) 2,506 (10) 2,532 (10) 2,459 (11) 2,512 (10)	$\begin{array}{l} O(L45) -P(5) -O(L51) \\ O(L45) -P(5) -O(E5A) \\ O(L45) -P(5) -O(E5B) \\ O(L51) -P(5) -O(E5A) \\ O(L51) -P(5) -O(E5B) \\ O(E5A) -P(5) -O(E5B) \end{array}$	100,2 (3) 110,4 (4) 108,1 (4) 111,4 (4) 106,3 (4) 118,1 (4)
Chaîne $\cdots P(1) \cdots$	P(5) P(1)-P(2) P(2)-P(3) P(3)-P(4) P(4)-P(5) P(5)-P(1)	2,933 (2) 2,916 (3) 2,977 (3) 2,896 (3) 2,969 (2)	P(1)-O(<i>L</i> 12)-P(2) P(2)-O(<i>L</i> 23)-P(3) P(3)-O(<i>L</i> 34)-P(4) P(4)-O(<i>L</i> 45)-P(5) P(5)-O(<i>L</i> 51)-P(1)	134,9 (4) 130,9 (4) 138,9 (4) 126,6 (4) 138,1 (4)
Tétraédre $P(6)O_4$	$\begin{array}{l} P(6)-O(L67) \\ P(6)-O(E6A) \\ O(L67) & -O(L106) \\ O(L67) & -O(E6A) \\ O(L67) & -O(E6B) \\ O(L106) & -O(E6B) \\ O(L106) & -O(E6B) \\ O(E6A) & -O(E6B) \end{array}$	1,592 (7) 1,489 (7) 2,480 (9) 2,499 (10) 2,514 (9) 2,458 (10) 2,546 (10) 2,598 (10)	$\begin{array}{c} P(6)-O(L106)\\ P(6)-O(E6B)\\ O(L67) &P(6)-O(L106)\\ O(L67) &P(6)-O(E6A)\\ O(L67) &P(6)-O(E6B)\\ O(L106) & -P(6)-O(E6B)\\ O(L106) & -P(6)-O(E6B)\\ O(E6A) &P(6)-O(E6B)\\ \end{array}$	$\begin{array}{c} 1,580 \ (7) \\ 1,517 \ (7) \\ 102,7 \ (3) \\ 108,3 \ (3) \\ 107,8 \ (3) \\ 106,4 \ (3) \\ 110,5 \ (3) \\ 119,6 \ (4) \end{array}$
ietraedre P(/)U ₄	$\begin{array}{l} P(7)-O(L67) \\ P(7)-O(E7A) \\ O(L67) -O(E7A) \\ O(L67) -O(E7A) \\ O(L67) -O(E7B) \\ O(L78) -O(E7B) \\ O(L78) -O(E7B) \\ O(E7A) -O(E7B) \\ O(E7A) -O(E7B) \end{array}$	1,595 (7) 1,504 (7) 2,449 (9) 2,498 (10) 2,499 (9) 2,532 (10) 2,566 (10) 2,607 (10)	$\begin{array}{c} P(7)-O(L78)\\ P(7)-O(E78)\\ O(L67)-P(7)-O(L78)\\ O(L67)-P(7)-O(E7A)\\ O(L67)-P(7)-O(E7B)\\ O(L78)-P(7)-O(E7B)\\ O(L78)-P(7)-O(E7B)\\ O(E7A)-P(7)-O(E7B)\\ O(E7A)-P(7)-O(E7B)\\ \end{array}$	1,627 (6) 1,487 (8) 98,9 (3) 107,3 (4) 108,2 (4) 107,8 (4) 110,8 (4) 121,2 (4) $102,2 (4) $

Tableau 4. Principales distances interatomiques et angles des liaisons dans l'arrangement atomique de $LiPO_3$ Tétraèdre P(1)O

Tableau 4 (suite)

Tétraèdre P(8)O ₄				
	P(8)–O(<i>L</i> 78) P(8)–O(<i>E</i> 8 <i>A</i>)	1,560 (7) 1,480 (7)	P(8)–O(<i>L</i> 89) P(8)–O(<i>E</i> 8 <i>B</i>)	1,608 (6) 1,446 (8)
Tátroàdro B(0)O	O(L78) -O(L89) O(L78) -O(E8A) O(L78) -O(E8B) O(L89) -O(E8A) O(L89) -O(E8B) O(E8A) -O(E8B)	2,484 (9) 2,434 (10) 2,452 (9) 2,515 (9) 2,487 (10) 2,520 (10)	O(L78) -P(8)-O(L89) O(L78) -P(8)-O(E8A) O(L78) -P(8)-O(E8B) O(L89) -P(8)-O(E8A) O(L89) -P(8)-O(E8B) O(E8A)-P(8)-O(E8B)	103,1 (3) 106,3 (4) 109,2 (4) 108,9 (4) 108,9 (4) 118,9 (4)
	P(9)-O(<i>L</i> 89) P(9)-O(<i>E</i> 9 <i>A</i>)	1,600 (7) 1,479 (7)	P(9)-O(L910) P(9)-O(E9B)	1,593 (7) 1,475 (7)
	$\begin{array}{l} O(L89) &O(L910) \\ O(L89) &O(E9A) \\ O(L89) &O(E9B) \\ O(L910) - O(E9A) \\ O(L910) & -O(E9B) \\ O(E9A)O(E9B) \end{array}$	2,456 (9) 2,523 (10) 2,454 (10) 2,521 (9) 2,477 (10) 2,568 (9)	O(L89)P(9)-O(L910) O(L89)P(9)-O(E9A) O(L89)P(9)-O(E9B) O(L910) -P(9)-O(E9A) O(L910) -P(9)-O(E9B) O(E9A)P(9)-O(E9B)	100,5 (3) 109,9 (4) 105,8 (3) 110,2 (4) 107,6 (4) 120,6 (4)
Tétraèdre P(10)O ₄	P(10) = O(L910)	1 622 (6)	P(10) = O(I 106)	1 611 (6)
	P(10) - O(E10A)	1,478 (7)	P(10) - O(E100)	1,490 (7)
	O(L910) -O(L106) O(L910) -O(E10A) O(L910) -O(E10B) O(L106) -O(E10A) O(L106) -O(E10B) O(E10A)-O(E10B)	2,480 (10) 2,561 (9) 2,461 (10) 2,518 (9) 2,568 (9) 2,549 (9)	$\begin{array}{l} O(L910) -P(10)-O(L106)\\ O(L910) -P(10)-O(E10A)\\ O(L910) -P(10)-O(E10B)\\ O(L106) -P(10)-O(E10A)\\ O(L106) -P(10)-O(E10B)\\ O(E10A)-P(10)-O(E10B)\\ \end{array}$	100,2 (3) 111,3 (3) 104,3 (3) 109,1 (3) 111,7 (3) 118,3 (4)
Chaîne $\cdots P(6) \cdots$	P(10)			
	P(6)—P(7) P(7)—P(8) P(8)—P(9) P(9)—P(10) P(10)-P(6)	2,889 (3) 2,990 (3) 2,904 (3) 2,956 (3) 2,953 (3)	$\begin{array}{l} P(6) & - O(L67) - P(7) \\ P(7) & - O(L78) - P(8) \\ P(8) & - O(L89) - P(9) \\ P(9) & - O(L910) - P(10) \\ P(10) - O(L166) - P(6) \end{array}$	130,0 (4) 139,5 (4) 129,7 (4) 133,7 (4) 135,4 (4)
Tétraèdre Li(1)O ₄	$\mathbf{L}_{i}(1) = \mathbf{O}(E5A)$	1.970 (17)		2 004 (19)
	Li(1)-O(E7B)	1,940 (17)	Li(1) - O(E8B)	2,004 (18) 2,024 (17)
	(E5A)-Li(1)-O(E1A) (E5A)-Li(1)-O(E7B) (E5A)-Li(1)-O(E8B)	106,8 (8) 133,9 (9) 103,9 (7)	O(E1A)-Li(1)-O(E8B) O(E1A)-Li(1)-O(E7B) O(E7B)-Li(1)-O(E8B)	92,7 (7) 111,0 (8) 99,4 (7)
Tétraèdre Li(2)O ₄				
	Li(2)-O(E1A) $Li(2)-O(E8B)$	1,976 (18) 1,935 (17)	Li(2)-O(E2A) Li(2)-O(E9B)	1,946 (17) 1,980 (18)
	(E1A)-Li(2)-O(E2A) (E1A)-Li(2)-O(E8B)	108,1 (8) 95,3 (7)	$\begin{array}{l} O(E2A)-Li(2)-O(E8B)\\ O(E2A)-Li(2)-O(E9B) \end{array}$	126,1 (8) 91,6 (7)
U(E(A) - L(2) - O(E9B)	133,9 (8)	$O(E \otimes B) - Li(2) - O(E \otimes B)$	105,8 (8)
	Li(3)-O(E2A) Li(3)-O(E9B)	1,948 (18) 1,897 (17)	Li(3)-O(E3A) Li(3)-O(E10B)	1,879 (17) 1,996 (18)
O(O(O(E2A)-Li(3)-O(E3A) E2A)-Li(3)-O(E9B) E2A)-Li(3)-O(E10B)	107,1 (8) 94,1 (7) 130,0 (9)	O(E3A)-Li(3)-O(E9B) O(E3A)-Li(3)-O(E10B) O(E9B)-Li(3)-O(E10B)	127,9 (9) 94,9 (7) 106,7 (8)
Tétraèdre Li(4)O ₄				
	Li(4)-O(E3A) Li(4)-O(E10B)	1,924 (18) 1,979 (19)	Li(4)–O(E4A) Li(4)–O(E6B)	1,983 (19) 2,037 (19)
O(O(O(E3A)-Li(4)-O($E4A$) E3A)-Li(4)-O($E10B$) E3A)-Li(4)-O($E6B$)	102,1 (8) 94,0 (8) 102,3 (8)	O(E4A)-Li(4)-O(E10B) O(E4A)-Li(4)-O(E6B) O(E10B)-Li(4)-O(E6B)	108,4 (8) 135,1 (9) 106,6 (8)
Tétraèdre Li(5)O ₄				
	Li(5)-O(E4A) Li(5)-O(E6B)	1,922 (20) 1,915 (19)	Li(5)–O(E5A) Li(5)–O(E7B)	1,911 (19) 1,969 (19)
O(O(O(E4A)–Li(5)–O(E5A) E4A)–Li(5)–O(E6B) E4A)–Li(5)–O(E7B)	107,4 (8) 122,1 (9) 93,1 (8)	O(E5A)-Li(5)-O(E6B) O(E5A)-Li(5)-O(E7B) O(E6B)-Li(5)-O(E7B)	102,6 (8) 126,9 (9) 106,5 (8)

2964

Tableau 4 (suite)

Tétraèdre Li(6)O₄			
Li(6)-O(E3B)	2,036 (19)	Li(6)–O(E4B)	2,028 (20)
Li(6)-O(E9A)	1,983 (20)	Li(6)–O(E10A)	1,942 (19)
O(E3B)-Li(6)-O(E4B)	98,9 (8)	O(E4B)-Li(6)-O(E9A)	109,2 (8)
O(E3B)-Li(6)-O(E9A)	129,6 (9)	O(E4B)-Li(6)-O(E10A)	91,9 (8)
O(E3B)-Li(6)-O(E10A)	106,9 (8)	O(E9A)-Li(6)-O(E10A)	112,5 (9)
Tétraèdre Li(7)O₄			
Li(7)–O(E4B)	1,930 (17)	Li(7)-O(E5B)	1,974 (18)
Li(7)–O(E10A)	1,916 (18)	Li(7)-O(E6A)	1,913 (17)
O(E4B)-Li(7)-O(E5B)	103,9 (8)	O(E5B)Li(7)-O(E10A)	135,5 (9)
O(E4B)-Li(7)-O(E10A)	95,8 (7)	O(E5B)Li(7)-O(E6A)	91,2 (7)
O(E4B)-Li(7)-O(E6A)	122,9 (8)	O(E10A)-Li(7)-O(E6A)	110,5 (8)
Tétraèdre Li(8)O₄			
Li(8)–O(<i>E5B</i>)	1,966 (20)	Li(8)-O(E1B)	1,963 (20)
Li(8)–O(<i>E6A</i>)	1,882 (20)	Li(8)-O(E7A)	1,972 (20)
O(E5B)-Li(8)-O(E1B)	108,8 (9)	O(E1B)-Li(8)-O(E6A)	137,8 (9)
O(E5B)-Li(8)-O(E6A)	92,4 (8)	O(E1B)-Li(8)-O(E7A)	94,4 (8)
O(E5B)-Li(8)-O(E7A)	117,6 (9)	O(E6A)-Li(8)-O(E7A)	107,5 (9)
Tétraèdre Li(9)O₄			
Li(9)-O(<i>E</i> 1 <i>B</i>)	2,017 (19)	Li(9)–O(E2B)	1,941 (19)
Li(9)-O(<i>E</i> 7 <i>A</i>)	1,977 (20)	Li(9)–O(E8A)	2,036 (19)
O(E1B)-Li(9)-O(E2B)	111,2 (9)	O(E2B)–Li(9)–O(E7A)	107,0 (9)
O(E1B)-Li(9)-O(E7A)	92,6 (9)	O(E2B)–Li(9)–O(E8A)	134,6 (9)
O(E1B)-Li(9)-O(E8A)	102,1 (8)	O(E7A)–Li(9)–O(E8A)	100,7 (8)
Tétraèdre Li(10)O			
Li(10)–O(E2B)	2,019 (18)	Li(10)–O(E3B)	1,896 (18)
Li(10)–O(E8A)	1,971 (19)	Li(10)–O(E9A)	1,906 (19)
O(E2B)-Li(10)-O(E3B)	105,5 (6)	O(E3B)-Li(10)-O(E8A)	95,4 (8)
O(E2B)-Li(10)-O(E8A)	122,3 (6)	O(E3B)-Li(10)-O(E9A)	135,2 (9)
O(E2B)-Li(10)-O(E9A)	95,9 (6)	O(E8A)-Li(10)-O(E9A)	105,3 (8)

Fig. 1. Projection sur le plan ac de l'ensemble de l'arrangement atomique de LiPO₃.

Fig. 2. Projection suivant la direction [101] de l'enchaînement des cations associés dans LiPO3. L'axe horizontal est (a-c)/2.

La Fig. 2 représente l'enchaînement des cations associés projeté sur un plan $\mathbf{b}, (\mathbf{a} - \mathbf{c})/2$. Tous les atomes de Li se trouvent dans des tétraèdres d'oxygène qui s'enchaînent soit par des arêtes soit par des sommets pour former un réseau bidimensionnel. Les atomes d'oxygène qui composent les tétraèdres LiO₄ sont tous des atomes d'oxygène extérieurs de la chaîne $(PO_3)_{\infty}$.

Il s'agit du deuxième exemple de chaîne de période dix tétraèdres. Le premier exemple était fourni par le polyphosphate de baryum potassium: $Ba_2K(PO_3)_s$ (Martin, Tordjman & Durif, 1975).

Références

BASSI, G. C. (1973). J. Appl. Cryst. 6, 280-284.

GRENIER, J. C. & DURIF, A. (1973). Z. Kristallogr. 137, 10-16.

MARTIN, C., TORDJMAN, I. & DURIF, A. (1975). Z. Kristallogr. 141, 403-411.

PREWITT, C. T. (1966). SFLS-5. Oak Ridge National Laboratory Report ORNL-TM-305.

Acta Cryst. (1976). B32, 2966

The Crystal Structure of the Solid Electrolyte: Silver Iodide-N,N,N',N',N'-Hexamethyl-1,3-propylenediamine Diiodide(I)

BY M. M. THACKERAY AND J. COETZER

National Physical Research Laboratory, CSIR, P.O.Box 395, Pretoria 0001, South Africa

(Received 5 April 1976; accepted 7 May 1976)

The structure of the solid electrolyte $Ag_{21}I_{25}(C_9H_{24}N_2)_2$ has been solved by direct methods and refined to R=0.122 with 2567 independent reflexions. The crystals are monoclinic (C2/c) with a=22.46 (2), b=12.97 (2), c=30.59 (2) Å, $\beta=104.15$ (5)°, Z=4. Intensities were collected on a four-circle diffractometer with Mo K α radiation. The structure consists of a three-dimensional I lattice which contains conduction pathways for the Ag⁺ ions. The I lattice is interrupted to contain the diamine chains.

Introduction

Numerous solid electrolytes with ionic conductivities of up to 0.11 Ω^{-1} cm⁻¹ have been synthesized by reacting AgI with various quaternary amine iodides (Owens, 1970; Owens Christie & Tiedeman 1971; Coetzer & Thackeray, 1976). Structural studies of several conducting phases have been undertaken to investigate the structure-conductivity relationships of these electrolyte systems (Geller & Lind, 1970; Geller & Owens, 1972; Geller, Skarstad & Wilber, 1975; Coetzer, Kruger & Thackeray, 1976). The structures consist of face-sharing I tetrahedra and octahedra which provide a network of passageways along which the Ag^+ ions are able to diffuse. Ag^+ ions are located in tetrahedral and octahedral sites and as there are generally three to four